
Introducing

Bitcoin

9000
A dilettante’s guide to Bitcoin scalability.

BIP-9000

(self-assigned)

Quote

“It’s kind of fun to do the impossible.”
Walt Disney

Goal

Safely scale Bitcoin to process over 9000 transactions.

Abstract

We propose a strategy to scale Bitcoin to a far greater throughput and performance than
available today while keeping the risk of centralization and costs to a minimum.
To achieve this we decrease block validation latency with diff blocks, parallelize
transaction validation, enable UTXO sharding with transaction input block height

annotations, and deploy a series of extension blocks for sustainable capacity increases.

!1

Introduction	
Bitcoin is hard to scale because users must validate all transactions in order to validate their own
payments. Mining nodes must also validate all transactions and do so with a very low latency in
order to avoid losing money on stale blocks. Increasing transaction throughput from non-
validating users imposes ever growing validation costs on the network nodes. This increases the
risk of network centralization where only a handful of nodes are able to validate the entire chain
of transactions. On the other hand, keeping a relatively small hard limit (e.g. 1 Mb block size
limit) reduces utility of Bitcoin and requires many users to resort to less secure systems for use
cases outside the secure cash storage and large-value payments.
 In the present paper we propose a scalability plan consisting of four stages to address
these problems.

1) Reduce block propagation latency using diff blocks. As a side effect, transactions get a
better confirmation feedback.

2) Scale transaction validation over multiple CPUs to improve throughput and reduce
validation latency.

3) Increase capacity using a series of extension blocks deployed as a soft fork allowing users
to safely boycott unsustainable capacity increases.

4) Assist caching of unspent transaction outputs with block height annotations in transaction
witness data.

 In addition to these we also propose several auxiliary upgrades to improve and extend
Bitcoin in the context of increased capacity.

!2

Part	1	
Fast	Block	Distribution	Using	Diff Blocks	

Whenever a new block is discovered by a mining node, it must be delivered and validated by
other miners as quickly as possible, so they can begin building their own blocks on top of it.
Nodes normally share roughly the same set of transactions in-between blocks, but cannot
effectively synchronize on that set before the next block is found.
 We observe that mining nodes frequently produce blocks of reduced difficulty that are
otherwise valid (sometimes called “weak blocks”). Based on that idea we propose a concept of
“diff blocks”. Diff blocks are annotated weak blocks with proof-of-work greater or equal to
1/100 of the current target and therefore being produced every 6 seconds on average.
Diff blocks form a tree like the regular blockchain. Unlike blocks in the main chain, every diff
block contains the difference in transactions compared to the previous diff block (a list of
removed transaction hashes and a list of added transactions). All block headers in the chain of
diff blocks have the same previous block hash equal to the current tip of the main chain.

 Mining nodes are much less concerned with the stale rate of their diff blocks because they
do not risk losing their reward. A valid full block may appear on any branch of the diff chain
and still will be valid. However, in order to minimize the size of the diff for the valid block,
miners strive to build on the existing chain of diff blocks and use cumulative proof-of-work as
means to synchronize on the largest possible subset of transactions.

Network

The steps to run the network of diff blocks are as follows:

1) New transactions are broadcast to all mining nodes.
2) Each node collects new transactions in a block.
3) Each node works on finding a difficult proof-of-work for its block.
4) When a node finds a proof-of-work above the diff block threshold, it computes the

difference with the state corresponding to the latest known diff block, wraps the
discovered block header in a diff block, and broadcasts the diff block to all nodes.

5) Nodes accept the diff block only if all transactions in it are valid and not already spent.
Resulting transaction set must match the merkle tree hash in the block header.

6) Nodes express their acceptance of the diff block by working on creating the next diff
block in the chain, using the hash of the accepted diff block as the previous hash.

7) If any diff block has proof-of-work matching the full block target, nodes are able to
reconstruct the full block from diff data and switch to mining blocks on top of it. Diff
blocks not built on top of the new full block are rejected.

Optimization

 Since diff blocks appear 100 times more frequently than full blocks, chances of producing
stale diff blocks increase. While not a problem for a revenue directly, frequent reorganizations
of diff blocks increase validation costs for mining nodes, thus affecting the stale rate of actual
blocks. To minimize the costs of chain reorganization, nodes can cache validated transactions.

!3

Diff Block

Block HeaderPrev Hash

Tx5 Tx6 Tx7 …

Diff Block

Block HeaderPrev Hash

Tx2 Tx6 Tx8 …

 In case the difficulty target turns out to be too low for the given connectivity latency
between mining nodes, they are free to soft fork a higher difficulty (e.g. target/50 yielding diff
blocks every 12 seconds) in order to minimize the amount of reorganizations. Alternatively, if
the difficulty target is still higher than the existing latency permits, nodes may upgrade to a
different version of the message protocol with a lower difficulty threshold for the diff blocks
(e.g. target/200 with a 3-second diff block interval).

Properties

Diff blocks have several interesting properties.

1) Nodes can see the shared unconfirmed transaction set without keeping track of individual
peer’s state. This allows to spread the cost of block validation across a 10-minute interval
between blocks instead of trying to pack it into a few seconds once the next block is
found.

2) Nodes can still replace transactions before the real block is found (features of RBF such
as cut-through payments are preserved).

3) No need for canonical transaction ordering, so diff blocks do not conflict with any other
protocols that use ordering of transactions today or in the future. If transaction needs to
be reordered, diff block should include a deletion entry and re-add transaction in correct
position later.

4) Users can get information about the chances their transaction getting mined. Transactions
with insufficient fees will not appear in a diff block, which will provide feedback to the
user within 6-12 seconds instead of making them wait 10-20 minutes. Note that inclusion
in a diff block does not mean that the transaction will be ultimately mined as it can be
replaced by another transaction before the full block is found.

!4

Part	2	
Scalable	Transaction	Validation	

Once block propagation latency is minimized, a much larger transaction throughput becomes
possible. This may shift performance bottleneck to the CPU. Existing Bitcoin implementations
perform serial transaction validation. This means that growing capacity of the network
increases validation latency linearly constrained by a single core of a modern 2-3 GHz CPU.

 We propose replacing this latency requirement with a bandwidth requirement by making
transaction validation parallelized. This way a growing rate of transactions can be satisfied with
a larger array of CPU cores in order to avoid latency increase.
 Incoming transactions can be checked for well-formedness in parallel. The only shared
data needed is time in the current context (that is, system time in case of memory pool, block
timestamp for transactions received in a block) to filter out invalid time-locked transactions.
 Then, transactions must be verified against double-spending: each input’s outpoint must
match an unspent output in UTXO set in current context and mark it as spent. This verification
can be parallelized by splitting all outpoints in N threads matching N CPUs. Splitting is done by
hashing the entire outpoint with node’s secret seed. Hashing this way allows nodes to balance
the CPU load and prevent potential DoS attacks seeking to cause an imbalanced load on the
CPUs.

 ThreadIndex = (H(Seed || TxHash) + OutputIndex) mod N

 After a successful match with the unspent output, the same thread can be used to execute
and verify signature scripts for the given transaction.

 Strictly speaking, given a chain of transactions, their signature scripts can be evaluated in
parallel, without waiting for the previous transaction to be fully verified. Unfortunately, this
opens a possibility of a DoS attack when the attacker submits a long chain of invalid
transactions and makes the node fill up its CPUs with useless computations at no cost to the
attacker. However, transactions received as part of the block (full or diff) already constitute a
sacrifice on the part of a potential attacker. This sacrifice limits DoS surface and permits the
node to “look ahead” and validate a limited number of inputs of a not-yet-validated transaction
in order to fill otherwise idle CPUs.

!5

Tx0 Tx1

Tx4

Tx3Tx2

Tx5

Tx7Tx6:0CPU 1:

CPU 2: Tx6:1

Tx0 Tx1

Tx2

Tx4

Tx3

Tx5

Tx7

Tx6

Tx0 Tx1 Tx2 Tx3 Tx4 Tx5 Tx6:0 Tx6:1CPU: Tx7

Tx0

Tx1

Tx4

Tx3

Tx2

Tx5

Tx7

Tx6:0

CPU 1:

CPU 2:

Tx6:1

CPU 3:

CPU 4:

Multi-signature verification is also parallelizable, although tricky in some cases. N-of-N
parallelization is obvious (and becomes irrelevant when Schnorr signatures are adopted), but
more complex schemes require a trade-off between latency and CPU cost to test multiple
combinations in parallel. For instance, 2-of-3 may use up to 4 parallel signature checks while at
most 2 will succeed (100% overhead), but 2-of-5 scheme may use up to 8 parallel signature
checks (300% overhead). For a larger number of combinations, a “look ahead” window can be
used to speculatively check a limited number of key–signature pairs to keep CPU overhead
limited. Mining nodes may choose higher CPU overhead over latency (they already spend much
more energy on actual mining, so a few extra CPUs are relatively cheap), while non-mining
nodes may prefer slightly higher latency and lower CPU consumption.

Optimizing Mining Nodes

 While non-mining nodes need enough CPU resources to validate full blocks every 10
minutes, mining nodes might want to go further and reduce the remaining latency more
aggressively by parallelizing transaction validation across multiple physical machines. The goal
is to perform a minimal number of computations serially. In this case, hash function H can be
used to break down UTXO set into M×N groups where M supergroups include whole
transactions and allow sharding UTXO set across multiple machines, but N subgroups have
individual outputs spread across threads within a single machine.

 MachineIndex = H(SeedA || TxHash) mod M
 ThreadIndex = (H(SeedB || TxHash) + OutputIndex) mod N

Assuming the time needed to verify a single transaction input is 1 ms, a 2-core personal
computer would be capable of validating 1000 double-input transactions per second. The same
throughput on a 10-machine setup with a faster 12-core CPUs yields 17 ms latency for
validating the same 1000 transactions appearing each second.  

!6

K1 S1CPU 1:

CPU 2:

CPU 3:

CPU 4:

K2 S2

K1 S2

K2 S3

K1 S3

K2 S4

K1 S4

K2 S5

K1 S2; K2 S5

Part	3	
Multi-Level	Capacity	Upgrades	

In parts 1 and 2 we discussed block propagation and transaction validation latency
improvements. To actually take advantage of these, we need a scheme to continuously increase
the capacity of the network in a safe manner.
 Many existing proposals to increase upper limit on block size ultimately leave the
decision on block size limit to the mining nodes. Miners are always able to reduce the capacity:
either individually by abstaining from including extra transactions, or collectively by enforcing
a limit via a soft fork. All known proposals to allow anyone to vote on increasing capacity are
reducible to voting performed by miners alone (because they alone decide which and how many
transactions get included in a block).
 What is needed is the ability for miners to collectively increase the capacity while
effectively allowing users to reduce it when necessary. Miners are able to perform a soft fork
upgrade to a higher capacity, while non-miners may choose to ignore it and simply require a
relatively high confirmation count for the transactions that they do not validate.

Extension Blocks

 We start with the idea of “extension blocks” proposed by Adam Back and deployable via
a soft fork. Transactions in a normal block can commit funds to be spent within the extension
block. The extension block itself is then committed to the main block. This enables us to place
whole chains of transactions within the extension block without consuming the capacity of the
main block.

 To make a transaction spendable in the extension block, funds must be sent to a new kind
of output that we call an import commitment. Such commitment specifies the script necessary to
unlock the output in the extension block.
 Import-committed output can be spent by a transaction in the extension block of the
corresponding level within the same main block or later, provided its witness script satisfies the
output script and the witness contains the correct block level (0 for main block) that helps locate
the output. Then, usual rules apply to transactions within the extension block.
 When the funds need to be exported to the main block, an export commitment is used that
similarly specifies the output script to be used in the main block export transaction.
 All export-committed outputs in the extension block must be matched with a single
export transaction constructed by the miner of the block. Miner is free to choose any subset of
unspent import-committed outputs in the main blocks, but must spend them exactly to outputs
matching the export commitments. Excess value must be directed to a special change output
with a script containing a change commitment (similar to import commitment, but without the
ability to be spent in the extension block). Change-committed outputs can be spent by the miner
alongside the import-committed outputs in order to service exports from the extension block.
 This way, an exported transaction output in the extension block is immediately matched
(within the enclosing main block) by a corresponding output in the main block and is ready to
be spent by its owner.

!7

Main Block Extension Block

Tx0 Import

Tx4

…

Tx1

Tx3 Export

Extension Hash

Tx2

Multi-Level Extension Blocks

 Instead of using just one extension block, we propose a series of extension blocks with
exponentially growing capacities of 2 Mb, 4 Mb and so on up to 8192 Mb unlocked one after
another via individual soft forks. This sequence would yield a total capacity of over 9000 Mb as
required.
 Individual transactions declare the level at which they can be included. Mining nodes can
collectively vote on unlocking the next level via a soft fork while non-mining nodes may decide
whether to use and trust transactions within this new level. Each soft fork also provides an
opportunity to adjust the format of the block to introduce improvements and new features to
both blocks and transactions.

 Higher-order extension blocks are committed recursively into their enclosing blocks.
Transaction imports and exports are also recursively applied between levels N and N+1. This
way, multiple hops are needed to move funds across several levels.

Specification Overview

1) In order to prepare all nodes for future upgrades we first need to enforce valid
commitments to all extension blocks. The top-level block should include a version bit to
indicate support for the extension blocks. Support for extension blocks is enforced when
950 out of 1000 blocks in a row declare such support. This does not yet unlock any
specific capacity, but enforces validation of individual commitments to extension blocks
for future upgrades.

2) Unlocking an additional extension block level requires another soft fork upgrade. The
top-level block should include a version bit to indicate support for the upgrade to the next
level extension block. Additional extension block is enforced when 950 out of 1000
blocks in a row declare such support (provided the previous level is already activated).

3) Each extension block has a header containing:
• Merkle root of included transactions.
• UTXO commitment for transactions at a given level (see Part 5 for details).
• Variable-length freeform field for future soft fork extensions and additional

commitments for this block level.
4) Every individual extension block is committed via a designated zero-value prunable

output in the coinbase transaction of the top-level block with the following script:
OP_RETURN <level> <commitment>. Already activated and enforced extension blocks are
committed by placing their hash in the corresponding output script. Extension blocks in
the process of soft fork pre-announcement are committed with a valid level number and
an all-zero commitment.

5) Commitment is a variable-length field extensible with future soft fork upgrades. First 32
bytes must contain a hash of a valid extension block header. The hash must be zeroed if
the extension block at this level is absent. Next 32 bytes are allocated for proof-of-
execution specified below.

6) Diff blocks store all transactions across all extension levels. Every entry has a block level
number to indicate the extension block affected by the entry.

!8

Main Block (L0) 2 Mb

Commitment 1

Commitment 2

Commitment 3

4 Mb

8 Mb

7) Import commitment script consists of a single-byte “import” flag (0xe0) and the
remaining bytes representing a versioned script to be spent in the next-level extension
block. Such output is added to the UTXO set at the current level (spendable by export
transactions only) and the UTXO set at the next level (spendable via the specified script
in the next level extension block).

8) Change commitment script consists of a single-byte “import change” flag (0xe1). This
affects only the UTXO set at the current level (spendable by exports only). This script is
used to allocate excess funds not exported in the current block.

9) Export commitment script consists of a single-byte “export” flag (0xe2) followed by a
versioned script. This commitment prevents the output from entering the UTXO set at a
given level and requires a higher level block to include a transaction spending previous
import-committed or change-committed outputs and allocating the specified value to a
specified versioned script.

 As an additional precaution for nodes that do not validate transactions at a certain level,
export outputs in blocks of all levels are not spendable until reaching maturity of 6
confirmations. Change outputs can be spent without maturity requirement because they are
already required to be spent by export transactions only. Without the additional maturity limit
on export transactions, miners would have a lower cost opportunity to attack the nodes that do
not validate higher-level extension blocks.

Improved Security In Face Of SPV Mining

 Both mining and non-mining nodes may find it not cost effective to validate additional
capacity levels. This will lead to a “security downgrade to SPV” regarding transactions
included in these levels. To minimize the risk of attack by dishonest nodes, users may require
an additional confirmation count for export transactions found in the chain leading to their
payment. For instance, if a user normally requires 6 confirmations, they may require 12
confirmations for any non-validated export transaction in the ancestor chain. If the latest
transaction of that kind is already confirmed by 3 blocks, the total amount of confirmations
required for the payment is max(6, 12 – 3) = 9.
 Mining nodes are also capable of so-called “SPV mining”. In this case, an extra capacity
may not be efficient to always validate by some nodes that may ignore it and trust the miner of
the parent block to validate it correctly. The problem with “SPV mining” is not the individual
miner’s risk that they take, but that non-mining SPV nodes trust such miner to perform
validation and therefore have their risk multiplied if the miner does not actually validate the
transactions. To avoid multiplication of risk we propose a “proof-of-execution” (PoE) scheme
that indicates if a miner was able to perform full validation of a given block level:

1) The miner chooses whether to verify transactions in a given level N or trust ancestor
blocks and not include such transactions themselves.

2) If the miner decides to “SPV mine” in respect to level N, they do not use a proof-of-
execution commitment for that level and are forbidden from including transactions of that
level and higher in their block. PoE then should be an all-zero 32-byte string.

3) If the miner decides to fully validate level N transactions of the parent block, they must
compute and commit to the unique hash of the computation of all transaction inputs by
hashing all executed opcodes, values pushed on stack, and relevant signature hashes for
CHECKSIG/CHECKMULTISIG operations. This commitment does not really prove that the
miner actually verified all ECDSA signatures, but proves that all the necessary data was
received and processed. This allows to demonstrate to other nodes whether the
bandwidth and synchronization are the bottleneck or not for the miners. (We intentionally
do not require committing any intermediate data relevant to signature verification to leave
room for optimizations and addition of the new signature schemes.)

4) Hashing of each piece of data is performed using HMAC-SHA256 where the key is set to
Hash256 image of the coinbase transaction with input signature script blanked out and all
zero-value outputs removed. This ensures that PoE is unique to the miner and bound to

!9

the miner’s reward without interfering with any other commitment schemes today or in
the future.

5) Hashing of transaction inputs and transaction itself is organized in a merkle tree to assist
parallelization methods described in Part 2.

6) If the parent block does not include level N transactions, PoE applies to the latest block
that does.

7) Nodes that do not perform validation of level N transactions should discount
confirmations of the non-validated transactions by the blocks lacking proof-of-execution
for the given transaction’s level.

8) All nodes can use PoE to estimate the effect of bandwidth constraints on miners. If a
dangerously large amount of miners are performing SPV mining for level N, then such
level must be considered unreliable and its usage should be discouraged until more
miners can afford validating it.

 Note that proof-of-execution applies only to the previous block, not to all blocks or a
range of blocks. Increasing the range would require hashing the same transactions multiple
times which is undesirable. However, it is not a weakness of the scheme. If the miner is
committed to process level N transactions, they will continuously calculate PoE for all blocks
even if they only mine a block once a day. If the miner chooses to process such transactions
only X% of the time, it would be equivalent to having only X% of its hashing power using PoE
which will be reflected in actual frequency of PoE in mined blocks and act as a useful indication
of how much hashing power is performing validation of a given capacity level.

!10

Part	4	
Block	Height	Input	Annotations	

 Larger capacity also means a faster growing set of unspent transaction outputs (“UTXO
set”). We need fast access to this set to enable quick transaction validation, which means more
expensive RAM storage. However, large amounts of RAM needed to store everyone’s unspent
coins may become prohibitively costly. Fortunately, some coins are less likely to be spent than
others. If we can predict which coins are less likely to be spent we can offload them to a much
cheaper, although a slower storage (such as an SSD or even a spinning hard drive).
 Taking cues from the design of generational garbage collectors, we propose a block height
as a heuristic to determine how likely any given output is to be spent. Younger outputs are spent
more often while older outputs are less likely to be spent in the next block. This is similar to an
observation that “most objects die young” in a typical GC system.
 Specific segregation of the UTXO set by the block height is not consensus-critical and
becomes an implementation detail. We expect that most nodes will decide to split the UTXO set
in two parts: one filling the whole RAM and the other sitting on an SSD.
 A new consensus rule is needed to assist with locating the outputs. All blocks are
required to annotate transaction inputs with a valid block height as a full 32-bit little-endian
integer. This allows nodes to immediately identify the location of the relevant unspent output
without additional in-memory index that would defeat the purpose of caching only a part of the
UTXO set in RAM.
 Block height annotations must necessarily be a part of the witness data since they are
added by the miners (miners decide in which block any given transaction is included). This way
block heights are not part of the normalized transaction hash.
  

!11

Part	5	
Additional	Enhancements	

Native Segregated Witness

 Separate extension blocks provide an opportunity to modernize the transaction format.
Witness data does not need to be committed using a separate tree, but can be committed directly
as a merkle tree of witness hashes while outpoint structures continue to use a normalized
transaction hash that does not include signature scripts and additional witness data. Such
change would be breaking for the main blocks, but can be supported natively in the extension
blocks from the start.

Multi-asset transactions

 Increased capacity enables many more interesting uses of Bitcoin. In order to continue
ещ згыр latte-buying hipsters out of the network, we propose to extend the transaction format to
support issuance and transfer of arbitrary assets in addition to the native bitcoin currency. This
would enable many sorts of applications of smart property and financial assets to participate on
the most secure financial network at a negligible cost to the nodes (transaction fees will still be
payable in bitcoin).
 Assets are defined by their issuance script that must be spent to introduce a newly minted
asset. Issuance script is identified by a separate script version (“issuance script version” 0xa0)
extended with a little-endian uint64 amount (PUSHDATA <VersionByte Amount
RestOfTheScript…>). During transaction validation, an input that spends such output is
assigned the corresponding amount of that asset (in addition to the amount of bitcoin value
assigned to it).
 Extension block transactions specify a variable-length asset identifier equal to Hash256
of the corresponding issuance script with the amount zeroed out (so that all issuances of
different value have the same asset identifier). Native bitcoin outputs carry a zero-length asset
identifier.
 It is open for discussion whether to enforce a strict balance between inputs and outputs of
non-bitcoin values, or to allow outputs to have lower value and leave the difference to the
mining nodes as a fee.

State Commitments

 Increased capacity makes bootstrapping a node a much more difficult task. Scanning the
entire historical chain of blocks may become highly impractical. To assist with bootstrapping,
every block must commit to a merkle root of all unspent outputs consisting of the amount, asset
identifier, script, block height, transaction hash and output index. Outputs are indexed by their
outpoint (transaction hash + output index, encoded in big-endian to assist sorting). Each
extension block has its own commitment for the unspent outputs created at its level.
 To support efficient updates to the UTXO commitments we need to use a merkle radix
tree (known as “patricia trie”) that allows O(log(N)) updates. Such construction also allows
efficient partial validation enabling lightweight nodes to store and validate smaller random
portions of the whole UTXO set and assist the network of SPV nodes with fraud proofs.

!12

Acknowledgements	
Presented plan is based on ideas proposed by Gregory Maxwell, Adam Back, Peter Todd, Pieter
Wuille, Matt Corallo, Gavin Andresen and other Bitcoin developers.

!13

